Nonparametric Approaches to Detecting Differentially Expressed Genes in Replicated Microarray Experiments
نویسندگان
چکیده
MOTIVATION An important goal in analyzing microarray data is to determine which genes are differentially expressed across two kinds of tissue samples or samples obtained under two experimental conditions. Various parametric tests, such as the two-sample t-test, have been used, but their possibly too strong parametric assumptions or large sample justifications may not hold in practice. As alternatives, a class of three nonparametric statistical methods, including the empirical Bayes method of Efron et al. (2001), the significance analysis of microarray (SAM) method of Tusher et al. (2001) and the mixture model method (MMM) of Pan et al. (2001), have been proposed. All the three methods depend on constructing a test statistic and a so-called null statistic such that the null statistic's distribution can be used to approximate the null distribution of the test statistic. However, relatively little effort has been directed toward assessment of the performance or the underlying assumptions of the methods in constructing such test and null statistics. RESULTS We point out a problem of a current method to construct the test and null statistics, which may lead to largely inflated Type I errors (i.e. false positives). We also propose two modifications that overcome the problem. In the context of MMM, the improved performance of the modified methods is demonstrated using simulated data. In addition, our numerical results also provide evidence to support the utility and effectiveness of MMM.
منابع مشابه
Nonparametric methods for identifying differentially expressed genes in microarray data
MOTIVATION Gene expression experiments provide a fast and systematic way to identify disease markers relevant to clinical care. In this study, we address the problem of robust identification of differentially expressed genes from microarray data. Differentially expressed genes, or discriminator genes, are genes with significantly different expression in two user-defined groups of microarray exp...
متن کاملIdentification of differentially expressed gene categories in microarray studies using nonparametric multivariate analysis
MOTIVATION The field of microarray data analysis is shifting emphasis from methods for identifying differentially expressed genes to methods for identifying differentially expressed gene categories. The latter approaches utilize a priori information about genes to group genes into categories and enhance the interpretation of experiments aimed at identifying expression differences across treatme...
متن کاملThe Baumgartner-Wei?-Schindler test for the detection of differentially expressed genes in replicated microarray experiments
MOTIVATION An important application of microarray experiments is to identify differentially expressed genes. Because microarray data are often not distributed according to a normal distribution nonparametric methods were suggested for their statistical analysis. Here, the Baumgartner-Weiss-Schindler test, a novel and powerful test based on ranks, is investigated and compared with the parametric...
متن کاملRobust semiparametric mixing for detecting differentially expressed genes in microarray experiments
An important goal of microarray studies is the detection of genes that show significant changes in observed expressions when two or more classes of biological samples such as treatment and control are compared. Using the c-fold rule, a gene is declared to be differentially expressed if its average expression level varies by more than a constant factor c between treatment and control (typically ...
متن کاملAnalysis of host response to bacterial infection using error model based gene expression microarray experiments
A key step in the analysis of microarray data is the selection of genes that are differentially expressed. Ideally, such experiments should be properly replicated in order to infer both technical and biological variability, and the data should be subjected to rigorous hypothesis tests to identify the differentially expressed genes. However, in microarray experiments involving the analysis of ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 19 9 شماره
صفحات -
تاریخ انتشار 2003